---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in rval(p, i, o, n, allow_gc)
988 allow_gc=allow_gc):
--> 989 r = p(n, [x[0] for x in i], o)
990 for o in node.outputs:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in p(node, args, outs)
977 outs,
--> 978 self, node)
979 except (ImportError, theano.gof.cmodule.MissingGXX):
theano/scan_module/scan_perform.pyx in theano.scan_module.scan_perform.perform (/home/miguel/.theano/compiledir_Linux-4.8--generic-x86_64-with-debian-stretch-sid-x86_64-3.6.1-64/scan_perform/mod.cpp:2628)()
NotImplementedError: We didn't implemented yet the case where scan do 0 iteration
During handling of the above exception, another exception occurred:
NotImplementedError Traceback (most recent call last)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/gof/op.py in rval(p, i, o, n)
871 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
--> 872 r = p(n, [x[0] for x in i], o)
873 for o in node.outputs:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/builders.py in perform(self, node, inputs, outputs)
612 def perform(self, node, inputs, outputs):
--> 613 variables = self.fn(*inputs)
614 assert len(variables) == len(outputs)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
897 thunk=thunk,
--> 898 storage_map=getattr(self.fn, 'storage_map', None))
899 else:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/gof/link.py in raise_with_op(node, thunk, exc_info, storage_map)
324 pass
--> 325 reraise(exc_type, exc_value, exc_trace)
326
/home/miguel/anaconda3/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
684 if value.__traceback__ is not tb:
--> 685 raise value.with_traceback(tb)
686 raise value
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in rval(p, i, o, n, allow_gc)
988 allow_gc=allow_gc):
--> 989 r = p(n, [x[0] for x in i], o)
990 for o in node.outputs:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in p(node, args, outs)
977 outs,
--> 978 self, node)
979 except (ImportError, theano.gof.cmodule.MissingGXX):
theano/scan_module/scan_perform.pyx in theano.scan_module.scan_perform.perform (/home/miguel/.theano/compiledir_Linux-4.8--generic-x86_64-with-debian-stretch-sid-x86_64-3.6.1-64/scan_perform/mod.cpp:2628)()
NotImplementedError: We didn't implemented yet the case where scan do 0 iteration
Apply node that caused the error: for{cpu,scan_fn}(Elemwise{minimum,no_inplace}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, IncSubtensor{Set;:int64:}.0, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(float32, matrix)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, matrix)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, Position of the dips, Rest of the points of the layers, Reference points for every layer, Angle of every dip, Azimuth, Polarity)
Toposort index: 50
Inputs types: [TensorType(int64, scalar), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, 3D), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, matrix), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, matrix), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(float32, vector), TensorType(float32, vector), TensorType(float32, vector)]
Inputs shapes: [(), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (1, 3, 729), (2,), (2,), (2,), (2,), (729, 3), (), (), (), (), (), (9, 729), (5,), (5,), (2, 3), (34, 3), (34, 3), (2,), (2,), (2,)]
Inputs strides: [(), (8,), (8,), (8,), (8,), (8,), (8,), (8,), (8748, 2916, 4), (8,), (8,), (8,), (8,), (4, 2916), (), (), (), (), (), (2916, 4), (8,), (8,), (4, 8), (12, 4), (12, 4), (4,), (4,), (4,)]
Inputs values: [array(0), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), 'not shown', array([ 0, 34]), array([0, 2]), array([0, 5]), array([3, 3]), 'not shown', array(0.8882311582565308, dtype=float32), array(0.01878463476896286, dtype=float32), array(0.009999999776482582, dtype=float32), array(2.0, dtype=float32), array(4.0, dtype=float32), 'not shown', array([13, 5, 7, 4, 5]), array([1, 2, 3, 4, 5]), 'not shown', 'not shown', 'not shown', array([ 18.434999, 71.565002], dtype=float32), array([ 90., 270.], dtype=float32), array([ 1., 1.], dtype=float32)]
Inputs type_num: [7, 7, 7, 7, 7, 7, 7, 7, 11, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 7, 7, 11, 11, 11, 11, 11, 11]
Outputs clients: [[Subtensor{int64::}(for{cpu,scan_fn}.0, Constant{1})]]
Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-8-cd9a2cbe4b09>", line 12, in <module>
geomodel = theano.OpFromGraph(input_data_T, [data_interp.interpolator.tg.whole_block_model(1)], on_unused_input='ignore')
File "../gempy/theanograf.py", line 1309, in whole_block_model
dict(input=self.u_grade_T[n_faults:], taps=[0])]
Debugprint of the apply node:
for{cpu,scan_fn} [id A] <TensorType(float32, 3D)> ''
|Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
| |Elemwise{minimum,no_inplace} [id C] <TensorType(int64, scalar)> ''
| | |Elemwise{minimum,no_inplace} [id D] <TensorType(int64, scalar)> ''
| | | |Elemwise{minimum,no_inplace} [id E] <TensorType(int64, scalar)> ''
| | | | |Elemwise{minimum,no_inplace} [id F] <TensorType(int64, scalar)> ''
| | | | | |Elemwise{minimum,no_inplace} [id G] <TensorType(int64, scalar)> ''
| | | | | | |Subtensor{int64} [id H] <TensorType(int64, scalar)> ''
| | | | | | | |Shape [id I] <TensorType(int64, vector)> ''
| | | | | | | | |Subtensor{int64:int64:} [id J] <TensorType(int64, vector)> ''
| | | | | | | | |Subtensor{int64::} [id K] <TensorType(int64, vector)> ''
| | | | | | | | | |<TensorType(int64, vector)> [id L] <TensorType(int64, vector)>
| | | | | | | | | |Constant{1} [id M] <int64>
| | | | | | | | |Constant{0} [id N] <int64>
| | | | | | | | |Constant{-1} [id O] <int64>
| | | | | | | |Constant{0} [id N] <int64>
| | | | | | |Subtensor{int64} [id P] <TensorType(int64, scalar)> ''
| | | | | | |Shape [id Q] <TensorType(int64, vector)> ''
| | | | | | | |Subtensor{int64::} [id R] <TensorType(int64, vector)> ''
| | | | | | | |Subtensor{int64::} [id K] <TensorType(int64, vector)> ''
| | | | | | | |Constant{1} [id M] <int64>
| | | | | | |Constant{0} [id N] <int64>
| | | | | |Subtensor{int64} [id S] <TensorType(int64, scalar)> ''
| | | | | |Shape [id T] <TensorType(int64, vector)> ''
| | | | | | |Subtensor{int64:int64:} [id U] <TensorType(int64, vector)> ''
| | | | | | |Subtensor{int64::} [id V] <TensorType(int64, vector)> ''
| | | | | | | |<TensorType(int64, vector)> [id W] <TensorType(int64, vector)>
| | | | | | | |Constant{1} [id M] <int64>
| | | | | | |Constant{0} [id N] <int64>
| | | | | | |Constant{-1} [id O] <int64>
| | | | | |Constant{0} [id N] <int64>
| | | | |Subtensor{int64} [id X] <TensorType(int64, scalar)> ''
| | | | |Shape [id Y] <TensorType(int64, vector)> ''
| | | | | |Subtensor{int64::} [id Z] <TensorType(int64, vector)> ''
| | | | | |Subtensor{int64::} [id V] <TensorType(int64, vector)> ''
| | | | | |Constant{1} [id M] <int64>
| | | | |Constant{0} [id N] <int64>
| | | |Subtensor{int64} [id BA] <TensorType(int64, scalar)> ''
| | | |Shape [id BB] <TensorType(int64, vector)> ''
| | | | |Subtensor{int64:int64:} [id BC] <TensorType(int64, vector)> ''
| | | | |Subtensor{int64::} [id BD] <TensorType(int64, vector)> ''
| | | | | |<TensorType(int64, vector)> [id BE] <TensorType(int64, vector)>
| | | | | |Constant{1} [id M] <int64>
| | | | |Constant{0} [id N] <int64>
| | | | |Constant{-1} [id O] <int64>
| | | |Constant{0} [id N] <int64>
| | |Subtensor{int64} [id BF] <TensorType(int64, scalar)> ''
| | |Shape [id BG] <TensorType(int64, vector)> ''
| | | |Subtensor{int64::} [id BH] <TensorType(int64, vector)> ''
| | | |Subtensor{int64::} [id BD] <TensorType(int64, vector)> ''
| | | |Constant{1} [id M] <int64>
| | |Constant{0} [id N] <int64>
| |Subtensor{int64} [id BI] <TensorType(int64, scalar)> ''
| |Shape [id BJ] <TensorType(int64, vector)> ''
| | |Subtensor{int64::} [id BK] <TensorType(int64, vector)> ''
| | |Subtensor{int64::} [id BL] <TensorType(int64, vector)> ''
| | | |<TensorType(int64, vector)> [id BM] <TensorType(int64, vector)>
| | | |Constant{1} [id M] <int64>
| | |Constant{0} [id N] <int64>
| |Constant{0} [id N] <int64>
|Subtensor{:int64:} [id BN] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id J] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
| |Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
|Subtensor{:int64:} [id BP] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id R] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BQ] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id U] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BR] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id Z] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BS] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id BC] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BT] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id BH] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BU] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id BK] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|IncSubtensor{Set;:int64:} [id BV] <TensorType(float32, 3D)> ''
| |AllocEmpty{dtype='float32'} [id BW] <TensorType(float32, 3D)> ''
| | |Elemwise{add,no_inplace} [id BX] <TensorType(int64, scalar)> ''
| | | |Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
| | | |Subtensor{int64} [id BY] <TensorType(int64, scalar)> ''
| | | |Shape [id BZ] <TensorType(int64, vector)> ''
| | | | |Rebroadcast{0} [id CA] <TensorType(float32, 3D)> ''
| | | | |InplaceDimShuffle{x,0,1} [id CB] <TensorType(float32, (True, False, False))> ''
| | | | |Join [id CC] <TensorType(float32, matrix)> ''
| | | | |TensorConstant{0} [id CD] <TensorType(int8, scalar)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | |Constant{0} [id N] <int64>
| | |Subtensor{int64} [id CF] <TensorType(int64, scalar)> ''
| | | |Shape [id BZ] <TensorType(int64, vector)> ''
| | | |Constant{1} [id M] <int64>
| | |Subtensor{int64} [id CG] <TensorType(int64, scalar)> ''
| | |Shape [id BZ] <TensorType(int64, vector)> ''
| | |Constant{2} [id CH] <int64>
| |Rebroadcast{0} [id CA] <TensorType(float32, 3D)> ''
| |ScalarFromTensor [id CI] <int64> ''
| |Subtensor{int64} [id BY] <TensorType(int64, scalar)> ''
|<TensorType(int64, vector)> [id L] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id W] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id BE] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id BM] <TensorType(int64, vector)>
|<TensorType(float32, matrix)> [id CJ] <TensorType(float32, matrix)>
|<TensorType(float32, scalar)> [id CK] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CL] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CM] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CN] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CO] <TensorType(float32, scalar)>
|<TensorType(float32, matrix)> [id CP] <TensorType(float32, matrix)>
|<TensorType(int64, vector)> [id CQ] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id CR] <TensorType(int64, vector)>
|Position of the dips [id CS] <TensorType(float32, matrix)>
|Rest of the points of the layers [id CT] <TensorType(float32, matrix)>
|Reference points for every layer [id CU] <TensorType(float32, matrix)>
|Angle of every dip [id CV] <TensorType(float32, vector)>
|Azimuth [id CW] <TensorType(float32, vector)>
|Polarity [id CX] <TensorType(float32, vector)>
Inner graphs of the scan ops:
for{cpu,scan_fn} [id A] <TensorType(float32, 3D)> ''
>IncSubtensor{Set;int64, ::} [id CY] <TensorType(float32, matrix)> ''
> |AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id CZ] <TensorType(float32, matrix)> ''
> | |AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id DA] <TensorType(float32, matrix)> ''
> | | |<TensorType(float32, matrix)> [id DB] <TensorType(float32, matrix)> -> [id BV]
> | | |Subtensor{:int64:} [id DC] <TensorType(int64, vector)> ''
> | | | |Sum{axis=[0], acc_dtype=int64} [id DD] <TensorType(int64, vector)> 'The chunk of block model of a specific series'
> | | | |ScalarFromTensor [id DE] <int64> ''
> | | | |Elemwise{mul,no_inplace} [id DF] <TensorType(int64, scalar)> ''
> | | | |TensorConstant{-2} [id DG] <TensorType(int8, scalar)>
> | | | |Subtensor{int64} [id DH] <TensorType(int64, scalar)> ''
> | | | |Shape [id DI] <TensorType(int64, vector)> ''
> | | | | |Rest of the points of the layers_copy [id DJ] <TensorType(float32, matrix)> -> [id CT]
> | | | |Constant{0} [id DK] <int64>
> | | |TensorConstant{0} [id DL] <TensorType(int64, scalar)>
> | | |Subtensor{int64} [id DM] <TensorType(int64, vector)> ''
> | | |Nonzero [id DN] <TensorType(int64, matrix)> ''
> | | | |Elemwise{Cast{int8}} [id DO] <TensorType(int8, vector)> ''
> | | | |Elemwise{eq,no_inplace} [id DP] <TensorType(bool, vector)> 'Yet simulated LITHOLOGY node'
> | | |Constant{0} [id DK] <int64>
> | |Subtensor{:int64:} [id DQ] <TensorType(float32, vector)> ''
> | | |Elemwise{add,no_inplace} [id DR] <TensorType(float32, vector)> 'Value of the potential field at every point'
> | | |ScalarFromTensor [id DE] <int64> ''
> | |TensorConstant{1} [id DS] <TensorType(int64, scalar)>
> | |Subtensor{int64} [id DM] <TensorType(int64, vector)> ''
> |Subtensor{int64, :int64:} [id DT] <TensorType(float32, vector)> ''
> | |Subtensor{int64} [id DU] <TensorType(float32, row)> ''
> | | |Subtensor{int64::} [id DV] <TensorType(float32, (False, True, False))> ''
> | | | |for{cpu,scan_fn} [id DW] <TensorType(float32, (False, True, False))> ''
> | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | | |Elemwise{minimum,no_inplace} [id DY] <TensorType(int64, scalar)> ''
> | | | | | | |Elemwise{minimum,no_inplace} [id DZ] <TensorType(int64, scalar)> ''
> | | | | | | | |Elemwise{minimum,no_inplace} [id EA] <TensorType(int64, scalar)> ''
> | | | | | | | | |Elemwise{minimum,no_inplace} [id EB] <TensorType(int64, scalar)> ''
> | | | | | | | | | |Elemwise{minimum,no_inplace} [id EC] <TensorType(int64, scalar)> ''
> | | | | | | | | | | |Subtensor{int64} [id ED] <TensorType(int64, scalar)> ''
> | | | | | | | | | | | |Shape [id EE] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | |Subtensor{int64:int64:} [id EF] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | |Subtensor{:int64:} [id EG] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | | |Length of interfaces in every series_copy [id EH] <TensorType(int64, vector)> -> [id L]
> | | | | | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | |Subtensor{int64} [id EK] <TensorType(int64, scalar)> ''
> | | | | | | | | | | |Shape [id EL] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Subtensor{int64::} [id EM] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Subtensor{:int64:} [id EG] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | |Subtensor{int64} [id EO] <TensorType(int64, scalar)> ''
> | | | | | | | | | |Shape [id EP] <TensorType(int64, vector)> ''
> | | | | | | | | | | |Subtensor{int64:int64:} [id EQ] <TensorType(int64, vector)> ''
> | | | | | | | | | | |Subtensor{:int64:} [id ER] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Length of foliations in every series_copy [id ES] <TensorType(int64, vector)> -> [id W]
> | | | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | |Subtensor{int64} [id ET] <TensorType(int64, scalar)> ''
> | | | | | | | | |Shape [id EU] <TensorType(int64, vector)> ''
> | | | | | | | | | |Subtensor{int64::} [id EV] <TensorType(int64, vector)> ''
> | | | | | | | | | |Subtensor{:int64:} [id ER] <TensorType(int64, vector)> ''
> | | | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | |Subtensor{int64} [id EW] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id EX] <TensorType(int64, vector)> ''
> | | | | | | | | |Subtensor{int64:int64:} [id EY] <TensorType(int64, vector)> ''
> | | | | | | | | |Subtensor{:int64:} [id EZ] <TensorType(int64, vector)> ''
> | | | | | | | | | |List with the number of formations_copy [id FA] <TensorType(int64, vector)> -> [id BE]
> | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | |Subtensor{int64} [id FB] <TensorType(int64, scalar)> ''
> | | | | | | |Shape [id FC] <TensorType(int64, vector)> ''
> | | | | | | | |Subtensor{int64::} [id FD] <TensorType(int64, vector)> ''
> | | | | | | | |Subtensor{:int64:} [id EZ] <TensorType(int64, vector)> ''
> | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | |Constant{0} [id DK] <int64>
> | | | | | |Subtensor{int64} [id FE] <TensorType(int64, scalar)> ''
> | | | | | |Shape [id FF] <TensorType(int64, vector)> ''
> | | | | | | |Subtensor{int64::} [id FG] <TensorType(int64, vector)> ''
> | | | | | | |Subtensor{:int64:} [id FH] <TensorType(int64, vector)> ''
> | | | | | | | |Grade of the universal drift_copy [id FI] <TensorType(int64, vector)> -> [id BM]
> | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | |Constant{0} [id DK] <int64>
> | | | | | |Constant{0} [id DK] <int64>
> | | | | |Subtensor{:int64:} [id FJ] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EF] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | |Subtensor{:int64:} [id FL] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id EM] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FM] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EQ] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FN] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id EV] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FO] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EY] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FP] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id FD] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FQ] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id FG] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |IncSubtensor{Set;:int64:} [id FR] <TensorType(float32, (False, True, False))> ''
> | | | | | |AllocEmpty{dtype='float32'} [id FS] <TensorType(float32, (False, True, False))> ''
> | | | | | | |Elemwise{add,no_inplace} [id FT] <TensorType(int64, scalar)> ''
> | | | | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | | | | |Subtensor{int64} [id FU] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | | | |Rebroadcast{0} [id FW] <TensorType(float32, (False, True, False))> ''
> | | | | | | | | |InplaceDimShuffle{x,0,1} [id FX] <TensorType(float32, (True, True, False))> ''
> | | | | | | | | |Alloc [id FY] <TensorType(float32, row)> 'final block of faults init'
> | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | |Subtensor{int64} [id FZ] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | |Subtensor{int64} [id GA] <TensorType(int64, scalar)> ''
> | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | |Constant{2} [id EI] <int64>
> | | | | | |Rebroadcast{0} [id FW] <TensorType(float32, (False, True, False))> ''
> | | | | | |ScalarFromTensor [id GB] <int64> ''
> | | | | | |Subtensor{int64} [id FU] <TensorType(int64, scalar)> ''
> | | | | |Coordinates of the grid points to interpolate_copy [id GC] <TensorType(float32, matrix)> -> [id CJ]
> | | | | |Range_copy [id GD] <TensorType(float32, scalar)> -> [id CK]
> | | | | |Covariance at 0_copy [id GE] <TensorType(float32, scalar)> -> [id CL]
> | | | | |<TensorType(float32, scalar)> [id GF] <TensorType(float32, scalar)> -> [id CM]
> | | | | |<TensorType(float32, scalar)> [id GG] <TensorType(float32, scalar)> -> [id CN]
> | | | | |<TensorType(float32, scalar)> [id GH] <TensorType(float32, scalar)> -> [id CO]
> | | | | |<TensorType(float32, matrix)> [id GI] <TensorType(float32, matrix)> -> [id CP]
> | | | | |<TensorType(int64, vector)> [id GJ] <TensorType(int64, vector)> -> [id CQ]
> | | | | |Value of the formation_copy [id GK] <TensorType(int64, vector)> -> [id CR]
> | | | | |Position of the dips_copy [id GL] <TensorType(float32, matrix)> -> [id CS]
> | | | | |Rest of the points of the layers_copy [id DJ] <TensorType(float32, matrix)> -> [id CT]
> | | | | |Reference points for every layer_copy [id GM] <TensorType(float32, matrix)> -> [id CU]
> | | | | |Angle of every dip_copy [id GN] <TensorType(float32, vector)> -> [id CV]
> | | | | |Azimuth_copy [id GO] <TensorType(float32, vector)> -> [id CW]
> | | | | |Polarity_copy [id GP] <TensorType(float32, vector)> -> [id CX]
> | | | |Constant{1} [id EN] <int64>
> | | |Constant{-1} [id EJ] <int64>
> | |Constant{-1} [id EJ] <int64>
> | |ScalarFromTensor [id DE] <int64> ''
> |Constant{2} [id EI] <int64>
for{cpu,scan_fn} [id DW] <TensorType(float32, (False, True, False))> ''
>AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id GQ] <TensorType(float32, row)> ''
> |final block of faults init[t-1] [id GR] <TensorType(float32, row)> -> [id FR]
> |Sum{axis=[0], acc_dtype=int64} [id GS] <TensorType(int64, vector)> 'The chunk of block model of a specific series'
> |TensorConstant{0} [id GT] <TensorType(int64, scalar)>
> |Subtensor{int64} [id GU] <TensorType(int64, vector)> ''
> |Nonzero [id GV] <TensorType(int64, matrix)> ''
> | |Elemwise{Cast{int8}} [id GW] <TensorType(int8, vector)> ''
> | |Join [id GX] <TensorType(float32, vector)> ''
> | |TensorConstant{0} [id GY] <TensorType(int8, scalar)>
> | |Elemwise{eq,no_inplace} [id GZ] <TensorType(bool, vector)> 'Yet simulated FAULTS node'
> | |Alloc [id HA] <TensorType(float32, vector)> ''
> | |TensorConstant{1.0} [id HB] <TensorType(float32, scalar)>
> | |Elemwise{mul,no_inplace} [id HC] <TensorType(int64, scalar)> ''
> | |TensorConstant{2} [id HD] <TensorType(int8, scalar)>
> | |Subtensor{int64} [id HE] <TensorType(int64, scalar)> ''
> | |Shape [id HF] <TensorType(int64, vector)> ''
> | | |Rest of the points of the layers_copy [id HG] <TensorType(float32, matrix)> -> [id DJ]
> | |Constant{0} [id HH] <int64>
> |Constant{0} [id HH] <int64>
Storage map footprint:
- <TensorType(float32, matrix)>, Input, Shape: (9, 729), ElemSize: 4 Byte(s), TotalSize: 26244 Byte(s)
- <TensorType(float32, matrix)>, Input, Shape: (729, 3), ElemSize: 4 Byte(s), TotalSize: 8748 Byte(s)
- IncSubtensor{Set;:int64:}.0, Shape: (1, 3, 729), ElemSize: 4 Byte(s), TotalSize: 8748 Byte(s)
- <TensorType(float32, matrix)>, Input, Shape: (1, 729), ElemSize: 4 Byte(s), TotalSize: 2916 Byte(s)
- Reference points for every layer, Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- Rest of the points of the layers, Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- Position of the dips, Input, Shape: (2, 3), ElemSize: 4 Byte(s), TotalSize: 24 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- Angle of every dip, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Azimuth, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Polarity, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Elemwise{minimum,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- TensorConstant{0}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
TotalSize: 47725.0 Byte(s) 0.000 GB
TotalSize inputs: 38969.0 Byte(s) 0.000 GB
During handling of the above exception, another exception occurred:
NotImplementedError Traceback (most recent call last)
<ipython-input-12-0ffb2cf6f372> in <module>()
4 # backend = pm.backends.ndarray.NDArray('geomodels')
5 step = pm.NUTS()
----> 6 trace = pm.sample(30, init=None, step=step, )
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in sample(draws, step, init, n_init, start, trace, chain, njobs, tune, progressbar, model, random_seed)
173 sample_func = _sample
174
--> 175 return sample_func(**sample_args)
176
177
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in _sample(draws, step, start, trace, chain, tune, progressbar, model, random_seed)
183 sampling = tqdm(sampling, total=draws)
184 try:
--> 185 for strace in sampling:
186 pass
187 except KeyboardInterrupt:
/home/miguel/anaconda3/lib/python3.6/site-packages/tqdm/_tqdm.py in __iter__(self)
831 """, fp_write=getattr(self.fp, 'write', sys.stderr.write))
832
--> 833 for obj in iterable:
834 yield obj
835 # Update and print the progressbar.
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in _iter_sample(draws, step, start, trace, chain, tune, model, random_seed)
247 start = {}
248
--> 249 strace = _choose_backend(trace, chain, model=model)
250
251 if len(strace) > 0:
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py in _choose_backend(trace, chain, shortcuts, **kwds)
278 return trace._straces[chain]
279 if trace is None:
--> 280 return NDArray(**kwds)
281
282 if shortcuts is None:
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/backends/ndarray.py in __init__(self, name, model, vars)
22
23 def __init__(self, name=None, model=None, vars=None):
---> 24 super(NDArray, self).__init__(name, model, vars)
25 self.draw_idx = 0
26 self.draws = None
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/backends/base.py in __init__(self, name, model, vars)
39 # Get variable shapes. Most backends will need this
40 # information.
---> 41 var_values = list(zip(self.varnames, self.fn(model.test_point)))
42 self.var_shapes = {var: value.shape
43 for var, value in var_values}
/home/miguel/anaconda3/lib/python3.6/site-packages/pymc3/model.py in __call__(self, state)
465
466 def __call__(self, state):
--> 467 return self.f(**state)
468
469
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
896 node=self.fn.nodes[self.fn.position_of_error],
897 thunk=thunk,
--> 898 storage_map=getattr(self.fn, 'storage_map', None))
899 else:
900 # old-style linkers raise their own exceptions
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/gof/link.py in raise_with_op(node, thunk, exc_info, storage_map)
323 # extra long error message in that case.
324 pass
--> 325 reraise(exc_type, exc_value, exc_trace)
326
327
/home/miguel/anaconda3/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
683 value = tp()
684 if value.__traceback__ is not tb:
--> 685 raise value.with_traceback(tb)
686 raise value
687
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
882 try:
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
886 except Exception:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/gof/op.py in rval(p, i, o, n)
870 # default arguments are stored in the closure of `rval`
871 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
--> 872 r = p(n, [x[0] for x in i], o)
873 for o in node.outputs:
874 compute_map[o][0] = True
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/builders.py in perform(self, node, inputs, outputs)
611
612 def perform(self, node, inputs, outputs):
--> 613 variables = self.fn(*inputs)
614 assert len(variables) == len(outputs)
615 for output, variable in izip(outputs, variables):
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
896 node=self.fn.nodes[self.fn.position_of_error],
897 thunk=thunk,
--> 898 storage_map=getattr(self.fn, 'storage_map', None))
899 else:
900 # old-style linkers raise their own exceptions
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/gof/link.py in raise_with_op(node, thunk, exc_info, storage_map)
323 # extra long error message in that case.
324 pass
--> 325 reraise(exc_type, exc_value, exc_trace)
326
327
/home/miguel/anaconda3/lib/python3.6/site-packages/six.py in reraise(tp, value, tb)
683 value = tp()
684 if value.__traceback__ is not tb:
--> 685 raise value.with_traceback(tb)
686 raise value
687
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/compile/function_module.py in __call__(self, *args, **kwargs)
882 try:
883 outputs =\
--> 884 self.fn() if output_subset is None else\
885 self.fn(output_subset=output_subset)
886 except Exception:
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in rval(p, i, o, n, allow_gc)
987 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node,
988 allow_gc=allow_gc):
--> 989 r = p(n, [x[0] for x in i], o)
990 for o in node.outputs:
991 compute_map[o][0] = True
/home/miguel/anaconda3/lib/python3.6/site-packages/Theano-0.9.0rc4-py3.6.egg/theano/scan_module/scan_op.py in p(node, args, outs)
976 args,
977 outs,
--> 978 self, node)
979 except (ImportError, theano.gof.cmodule.MissingGXX):
980 p = self.execute
theano/scan_module/scan_perform.pyx in theano.scan_module.scan_perform.perform (/home/miguel/.theano/compiledir_Linux-4.8--generic-x86_64-with-debian-stretch-sid-x86_64-3.6.1-64/scan_perform/mod.cpp:2628)()
NotImplementedError: We didn't implemented yet the case where scan do 0 iteration
Apply node that caused the error: for{cpu,scan_fn}(Elemwise{minimum,no_inplace}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, Subtensor{:int64:}.0, IncSubtensor{Set;:int64:}.0, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, <TensorType(float32, matrix)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, matrix)>, <TensorType(int64, vector)>, <TensorType(int64, vector)>, Position of the dips, Rest of the points of the layers, Reference points for every layer, Angle of every dip, Azimuth, Polarity)
Toposort index: 50
Inputs types: [TensorType(int64, scalar), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, 3D), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, matrix), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, matrix), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(float32, vector), TensorType(float32, vector), TensorType(float32, vector)]
Inputs shapes: [(), (0,), (0,), (0,), (0,), (0,), (0,), (0,), (1, 3, 729), (2,), (2,), (2,), (2,), (729, 3), (), (), (), (), (), (9, 729), (5,), (5,), (2, 3), (34, 3), (34, 3), (2,), (2,), (2,)]
Inputs strides: [(), (8,), (8,), (8,), (8,), (8,), (8,), (8,), (8748, 2916, 4), (8,), (8,), (8,), (8,), (4, 2916), (), (), (), (), (), (2916, 4), (8,), (8,), (4, 8), (12, 4), (12, 4), (4,), (4,), (4,)]
Inputs values: [array(0), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), 'not shown', array([ 0, 34]), array([0, 2]), array([0, 5]), array([3, 3]), 'not shown', array(0.8882311582565308, dtype=float32), array(0.01878463476896286, dtype=float32), array(0.009999999776482582, dtype=float32), array(2.0, dtype=float32), array(4.0, dtype=float32), 'not shown', array([13, 5, 7, 4, 5]), array([1, 2, 3, 4, 5]), 'not shown', 'not shown', 'not shown', array([ 18.434999, 71.565002], dtype=float32), array([ 90., 270.], dtype=float32), array([ 1., 1.], dtype=float32)]
Inputs type_num: [7, 7, 7, 7, 7, 7, 7, 7, 11, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 7, 7, 11, 11, 11, 11, 11, 11]
Outputs clients: [[Subtensor{int64::}(for{cpu,scan_fn}.0, Constant{1})]]
Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-8-cd9a2cbe4b09>", line 12, in <module>
geomodel = theano.OpFromGraph(input_data_T, [data_interp.interpolator.tg.whole_block_model(1)], on_unused_input='ignore')
File "../gempy/theanograf.py", line 1309, in whole_block_model
dict(input=self.u_grade_T[n_faults:], taps=[0])]
Debugprint of the apply node:
for{cpu,scan_fn} [id A] <TensorType(float32, 3D)> ''
|Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
| |Elemwise{minimum,no_inplace} [id C] <TensorType(int64, scalar)> ''
| | |Elemwise{minimum,no_inplace} [id D] <TensorType(int64, scalar)> ''
| | | |Elemwise{minimum,no_inplace} [id E] <TensorType(int64, scalar)> ''
| | | | |Elemwise{minimum,no_inplace} [id F] <TensorType(int64, scalar)> ''
| | | | | |Elemwise{minimum,no_inplace} [id G] <TensorType(int64, scalar)> ''
| | | | | | |Subtensor{int64} [id H] <TensorType(int64, scalar)> ''
| | | | | | | |Shape [id I] <TensorType(int64, vector)> ''
| | | | | | | | |Subtensor{int64:int64:} [id J] <TensorType(int64, vector)> ''
| | | | | | | | |Subtensor{int64::} [id K] <TensorType(int64, vector)> ''
| | | | | | | | | |<TensorType(int64, vector)> [id L] <TensorType(int64, vector)>
| | | | | | | | | |Constant{1} [id M] <int64>
| | | | | | | | |Constant{0} [id N] <int64>
| | | | | | | | |Constant{-1} [id O] <int64>
| | | | | | | |Constant{0} [id N] <int64>
| | | | | | |Subtensor{int64} [id P] <TensorType(int64, scalar)> ''
| | | | | | |Shape [id Q] <TensorType(int64, vector)> ''
| | | | | | | |Subtensor{int64::} [id R] <TensorType(int64, vector)> ''
| | | | | | | |Subtensor{int64::} [id K] <TensorType(int64, vector)> ''
| | | | | | | |Constant{1} [id M] <int64>
| | | | | | |Constant{0} [id N] <int64>
| | | | | |Subtensor{int64} [id S] <TensorType(int64, scalar)> ''
| | | | | |Shape [id T] <TensorType(int64, vector)> ''
| | | | | | |Subtensor{int64:int64:} [id U] <TensorType(int64, vector)> ''
| | | | | | |Subtensor{int64::} [id V] <TensorType(int64, vector)> ''
| | | | | | | |<TensorType(int64, vector)> [id W] <TensorType(int64, vector)>
| | | | | | | |Constant{1} [id M] <int64>
| | | | | | |Constant{0} [id N] <int64>
| | | | | | |Constant{-1} [id O] <int64>
| | | | | |Constant{0} [id N] <int64>
| | | | |Subtensor{int64} [id X] <TensorType(int64, scalar)> ''
| | | | |Shape [id Y] <TensorType(int64, vector)> ''
| | | | | |Subtensor{int64::} [id Z] <TensorType(int64, vector)> ''
| | | | | |Subtensor{int64::} [id V] <TensorType(int64, vector)> ''
| | | | | |Constant{1} [id M] <int64>
| | | | |Constant{0} [id N] <int64>
| | | |Subtensor{int64} [id BA] <TensorType(int64, scalar)> ''
| | | |Shape [id BB] <TensorType(int64, vector)> ''
| | | | |Subtensor{int64:int64:} [id BC] <TensorType(int64, vector)> ''
| | | | |Subtensor{int64::} [id BD] <TensorType(int64, vector)> ''
| | | | | |<TensorType(int64, vector)> [id BE] <TensorType(int64, vector)>
| | | | | |Constant{1} [id M] <int64>
| | | | |Constant{0} [id N] <int64>
| | | | |Constant{-1} [id O] <int64>
| | | |Constant{0} [id N] <int64>
| | |Subtensor{int64} [id BF] <TensorType(int64, scalar)> ''
| | |Shape [id BG] <TensorType(int64, vector)> ''
| | | |Subtensor{int64::} [id BH] <TensorType(int64, vector)> ''
| | | |Subtensor{int64::} [id BD] <TensorType(int64, vector)> ''
| | | |Constant{1} [id M] <int64>
| | |Constant{0} [id N] <int64>
| |Subtensor{int64} [id BI] <TensorType(int64, scalar)> ''
| |Shape [id BJ] <TensorType(int64, vector)> ''
| | |Subtensor{int64::} [id BK] <TensorType(int64, vector)> ''
| | |Subtensor{int64::} [id BL] <TensorType(int64, vector)> ''
| | | |<TensorType(int64, vector)> [id BM] <TensorType(int64, vector)>
| | | |Constant{1} [id M] <int64>
| | |Constant{0} [id N] <int64>
| |Constant{0} [id N] <int64>
|Subtensor{:int64:} [id BN] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id J] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
| |Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
|Subtensor{:int64:} [id BP] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id R] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BQ] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id U] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BR] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id Z] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BS] <TensorType(int64, vector)> ''
| |Subtensor{int64:int64:} [id BC] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BT] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id BH] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|Subtensor{:int64:} [id BU] <TensorType(int64, vector)> ''
| |Subtensor{int64::} [id BK] <TensorType(int64, vector)> ''
| |ScalarFromTensor [id BO] <int64> ''
|IncSubtensor{Set;:int64:} [id BV] <TensorType(float32, 3D)> ''
| |AllocEmpty{dtype='float32'} [id BW] <TensorType(float32, 3D)> ''
| | |Elemwise{add,no_inplace} [id BX] <TensorType(int64, scalar)> ''
| | | |Elemwise{minimum,no_inplace} [id B] <TensorType(int64, scalar)> ''
| | | |Subtensor{int64} [id BY] <TensorType(int64, scalar)> ''
| | | |Shape [id BZ] <TensorType(int64, vector)> ''
| | | | |Rebroadcast{0} [id CA] <TensorType(float32, 3D)> ''
| | | | |InplaceDimShuffle{x,0,1} [id CB] <TensorType(float32, (True, False, False))> ''
| | | | |Join [id CC] <TensorType(float32, matrix)> ''
| | | | |TensorConstant{0} [id CD] <TensorType(int8, scalar)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | | |<TensorType(float32, matrix)> [id CE] <TensorType(float32, matrix)>
| | | |Constant{0} [id N] <int64>
| | |Subtensor{int64} [id CF] <TensorType(int64, scalar)> ''
| | | |Shape [id BZ] <TensorType(int64, vector)> ''
| | | |Constant{1} [id M] <int64>
| | |Subtensor{int64} [id CG] <TensorType(int64, scalar)> ''
| | |Shape [id BZ] <TensorType(int64, vector)> ''
| | |Constant{2} [id CH] <int64>
| |Rebroadcast{0} [id CA] <TensorType(float32, 3D)> ''
| |ScalarFromTensor [id CI] <int64> ''
| |Subtensor{int64} [id BY] <TensorType(int64, scalar)> ''
|<TensorType(int64, vector)> [id L] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id W] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id BE] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id BM] <TensorType(int64, vector)>
|<TensorType(float32, matrix)> [id CJ] <TensorType(float32, matrix)>
|<TensorType(float32, scalar)> [id CK] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CL] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CM] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CN] <TensorType(float32, scalar)>
|<TensorType(float32, scalar)> [id CO] <TensorType(float32, scalar)>
|<TensorType(float32, matrix)> [id CP] <TensorType(float32, matrix)>
|<TensorType(int64, vector)> [id CQ] <TensorType(int64, vector)>
|<TensorType(int64, vector)> [id CR] <TensorType(int64, vector)>
|Position of the dips [id CS] <TensorType(float32, matrix)>
|Rest of the points of the layers [id CT] <TensorType(float32, matrix)>
|Reference points for every layer [id CU] <TensorType(float32, matrix)>
|Angle of every dip [id CV] <TensorType(float32, vector)>
|Azimuth [id CW] <TensorType(float32, vector)>
|Polarity [id CX] <TensorType(float32, vector)>
Inner graphs of the scan ops:
for{cpu,scan_fn} [id A] <TensorType(float32, 3D)> ''
>IncSubtensor{Set;int64, ::} [id CY] <TensorType(float32, matrix)> ''
> |AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id CZ] <TensorType(float32, matrix)> ''
> | |AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id DA] <TensorType(float32, matrix)> ''
> | | |<TensorType(float32, matrix)> [id DB] <TensorType(float32, matrix)> -> [id BV]
> | | |Subtensor{:int64:} [id DC] <TensorType(int64, vector)> ''
> | | | |Sum{axis=[0], acc_dtype=int64} [id DD] <TensorType(int64, vector)> 'The chunk of block model of a specific series'
> | | | |ScalarFromTensor [id DE] <int64> ''
> | | | |Elemwise{mul,no_inplace} [id DF] <TensorType(int64, scalar)> ''
> | | | |TensorConstant{-2} [id DG] <TensorType(int8, scalar)>
> | | | |Subtensor{int64} [id DH] <TensorType(int64, scalar)> ''
> | | | |Shape [id DI] <TensorType(int64, vector)> ''
> | | | | |Rest of the points of the layers_copy [id DJ] <TensorType(float32, matrix)> -> [id CT]
> | | | |Constant{0} [id DK] <int64>
> | | |TensorConstant{0} [id DL] <TensorType(int64, scalar)>
> | | |Subtensor{int64} [id DM] <TensorType(int64, vector)> ''
> | | |Nonzero [id DN] <TensorType(int64, matrix)> ''
> | | | |Elemwise{Cast{int8}} [id DO] <TensorType(int8, vector)> ''
> | | | |Elemwise{eq,no_inplace} [id DP] <TensorType(bool, vector)> 'Yet simulated LITHOLOGY node'
> | | |Constant{0} [id DK] <int64>
> | |Subtensor{:int64:} [id DQ] <TensorType(float32, vector)> ''
> | | |Elemwise{add,no_inplace} [id DR] <TensorType(float32, vector)> 'Value of the potential field at every point'
> | | |ScalarFromTensor [id DE] <int64> ''
> | |TensorConstant{1} [id DS] <TensorType(int64, scalar)>
> | |Subtensor{int64} [id DM] <TensorType(int64, vector)> ''
> |Subtensor{int64, :int64:} [id DT] <TensorType(float32, vector)> ''
> | |Subtensor{int64} [id DU] <TensorType(float32, row)> ''
> | | |Subtensor{int64::} [id DV] <TensorType(float32, (False, True, False))> ''
> | | | |for{cpu,scan_fn} [id DW] <TensorType(float32, (False, True, False))> ''
> | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | | |Elemwise{minimum,no_inplace} [id DY] <TensorType(int64, scalar)> ''
> | | | | | | |Elemwise{minimum,no_inplace} [id DZ] <TensorType(int64, scalar)> ''
> | | | | | | | |Elemwise{minimum,no_inplace} [id EA] <TensorType(int64, scalar)> ''
> | | | | | | | | |Elemwise{minimum,no_inplace} [id EB] <TensorType(int64, scalar)> ''
> | | | | | | | | | |Elemwise{minimum,no_inplace} [id EC] <TensorType(int64, scalar)> ''
> | | | | | | | | | | |Subtensor{int64} [id ED] <TensorType(int64, scalar)> ''
> | | | | | | | | | | | |Shape [id EE] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | |Subtensor{int64:int64:} [id EF] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | |Subtensor{:int64:} [id EG] <TensorType(int64, vector)> ''
> | | | | | | | | | | | | | |Length of interfaces in every series_copy [id EH] <TensorType(int64, vector)> -> [id L]
> | | | | | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | |Subtensor{int64} [id EK] <TensorType(int64, scalar)> ''
> | | | | | | | | | | |Shape [id EL] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Subtensor{int64::} [id EM] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Subtensor{:int64:} [id EG] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | |Subtensor{int64} [id EO] <TensorType(int64, scalar)> ''
> | | | | | | | | | |Shape [id EP] <TensorType(int64, vector)> ''
> | | | | | | | | | | |Subtensor{int64:int64:} [id EQ] <TensorType(int64, vector)> ''
> | | | | | | | | | | |Subtensor{:int64:} [id ER] <TensorType(int64, vector)> ''
> | | | | | | | | | | | |Length of foliations in every series_copy [id ES] <TensorType(int64, vector)> -> [id W]
> | | | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | |Subtensor{int64} [id ET] <TensorType(int64, scalar)> ''
> | | | | | | | | |Shape [id EU] <TensorType(int64, vector)> ''
> | | | | | | | | | |Subtensor{int64::} [id EV] <TensorType(int64, vector)> ''
> | | | | | | | | | |Subtensor{:int64:} [id ER] <TensorType(int64, vector)> ''
> | | | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | |Subtensor{int64} [id EW] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id EX] <TensorType(int64, vector)> ''
> | | | | | | | | |Subtensor{int64:int64:} [id EY] <TensorType(int64, vector)> ''
> | | | | | | | | |Subtensor{:int64:} [id EZ] <TensorType(int64, vector)> ''
> | | | | | | | | | |List with the number of formations_copy [id FA] <TensorType(int64, vector)> -> [id BE]
> | | | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | | | |Constant{-1} [id EJ] <int64>
> | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | |Subtensor{int64} [id FB] <TensorType(int64, scalar)> ''
> | | | | | | |Shape [id FC] <TensorType(int64, vector)> ''
> | | | | | | | |Subtensor{int64::} [id FD] <TensorType(int64, vector)> ''
> | | | | | | | |Subtensor{:int64:} [id EZ] <TensorType(int64, vector)> ''
> | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | |Constant{0} [id DK] <int64>
> | | | | | |Subtensor{int64} [id FE] <TensorType(int64, scalar)> ''
> | | | | | |Shape [id FF] <TensorType(int64, vector)> ''
> | | | | | | |Subtensor{int64::} [id FG] <TensorType(int64, vector)> ''
> | | | | | | |Subtensor{:int64:} [id FH] <TensorType(int64, vector)> ''
> | | | | | | | |Grade of the universal drift_copy [id FI] <TensorType(int64, vector)> -> [id BM]
> | | | | | | | |Constant{2} [id EI] <int64>
> | | | | | | |Constant{0} [id DK] <int64>
> | | | | | |Constant{0} [id DK] <int64>
> | | | | |Subtensor{:int64:} [id FJ] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EF] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | |Subtensor{:int64:} [id FL] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id EM] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FM] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EQ] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FN] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id EV] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FO] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64:int64:} [id EY] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FP] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id FD] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |Subtensor{:int64:} [id FQ] <TensorType(int64, vector)> ''
> | | | | | |Subtensor{int64::} [id FG] <TensorType(int64, vector)> ''
> | | | | | |ScalarFromTensor [id FK] <int64> ''
> | | | | |IncSubtensor{Set;:int64:} [id FR] <TensorType(float32, (False, True, False))> ''
> | | | | | |AllocEmpty{dtype='float32'} [id FS] <TensorType(float32, (False, True, False))> ''
> | | | | | | |Elemwise{add,no_inplace} [id FT] <TensorType(int64, scalar)> ''
> | | | | | | | |Elemwise{minimum,no_inplace} [id DX] <TensorType(int64, scalar)> ''
> | | | | | | | |Subtensor{int64} [id FU] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | | | |Rebroadcast{0} [id FW] <TensorType(float32, (False, True, False))> ''
> | | | | | | | | |InplaceDimShuffle{x,0,1} [id FX] <TensorType(float32, (True, True, False))> ''
> | | | | | | | | |Alloc [id FY] <TensorType(float32, row)> 'final block of faults init'
> | | | | | | | |Constant{0} [id DK] <int64>
> | | | | | | |Subtensor{int64} [id FZ] <TensorType(int64, scalar)> ''
> | | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | | |Constant{1} [id EN] <int64>
> | | | | | | |Subtensor{int64} [id GA] <TensorType(int64, scalar)> ''
> | | | | | | |Shape [id FV] <TensorType(int64, vector)> ''
> | | | | | | |Constant{2} [id EI] <int64>
> | | | | | |Rebroadcast{0} [id FW] <TensorType(float32, (False, True, False))> ''
> | | | | | |ScalarFromTensor [id GB] <int64> ''
> | | | | | |Subtensor{int64} [id FU] <TensorType(int64, scalar)> ''
> | | | | |Coordinates of the grid points to interpolate_copy [id GC] <TensorType(float32, matrix)> -> [id CJ]
> | | | | |Range_copy [id GD] <TensorType(float32, scalar)> -> [id CK]
> | | | | |Covariance at 0_copy [id GE] <TensorType(float32, scalar)> -> [id CL]
> | | | | |<TensorType(float32, scalar)> [id GF] <TensorType(float32, scalar)> -> [id CM]
> | | | | |<TensorType(float32, scalar)> [id GG] <TensorType(float32, scalar)> -> [id CN]
> | | | | |<TensorType(float32, scalar)> [id GH] <TensorType(float32, scalar)> -> [id CO]
> | | | | |<TensorType(float32, matrix)> [id GI] <TensorType(float32, matrix)> -> [id CP]
> | | | | |<TensorType(int64, vector)> [id GJ] <TensorType(int64, vector)> -> [id CQ]
> | | | | |Value of the formation_copy [id GK] <TensorType(int64, vector)> -> [id CR]
> | | | | |Position of the dips_copy [id GL] <TensorType(float32, matrix)> -> [id CS]
> | | | | |Rest of the points of the layers_copy [id DJ] <TensorType(float32, matrix)> -> [id CT]
> | | | | |Reference points for every layer_copy [id GM] <TensorType(float32, matrix)> -> [id CU]
> | | | | |Angle of every dip_copy [id GN] <TensorType(float32, vector)> -> [id CV]
> | | | | |Azimuth_copy [id GO] <TensorType(float32, vector)> -> [id CW]
> | | | | |Polarity_copy [id GP] <TensorType(float32, vector)> -> [id CX]
> | | | |Constant{1} [id EN] <int64>
> | | |Constant{-1} [id EJ] <int64>
> | |Constant{-1} [id EJ] <int64>
> | |ScalarFromTensor [id DE] <int64> ''
> |Constant{2} [id EI] <int64>
for{cpu,scan_fn} [id DW] <TensorType(float32, (False, True, False))> ''
>AdvancedIncSubtensor{inplace=False, set_instead_of_inc=True} [id GQ] <TensorType(float32, row)> ''
> |final block of faults init[t-1] [id GR] <TensorType(float32, row)> -> [id FR]
> |Sum{axis=[0], acc_dtype=int64} [id GS] <TensorType(int64, vector)> 'The chunk of block model of a specific series'
> |TensorConstant{0} [id GT] <TensorType(int64, scalar)>
> |Subtensor{int64} [id GU] <TensorType(int64, vector)> ''
> |Nonzero [id GV] <TensorType(int64, matrix)> ''
> | |Elemwise{Cast{int8}} [id GW] <TensorType(int8, vector)> ''
> | |Join [id GX] <TensorType(float32, vector)> ''
> | |TensorConstant{0} [id GY] <TensorType(int8, scalar)>
> | |Elemwise{eq,no_inplace} [id GZ] <TensorType(bool, vector)> 'Yet simulated FAULTS node'
> | |Alloc [id HA] <TensorType(float32, vector)> ''
> | |TensorConstant{1.0} [id HB] <TensorType(float32, scalar)>
> | |Elemwise{mul,no_inplace} [id HC] <TensorType(int64, scalar)> ''
> | |TensorConstant{2} [id HD] <TensorType(int8, scalar)>
> | |Subtensor{int64} [id HE] <TensorType(int64, scalar)> ''
> | |Shape [id HF] <TensorType(int64, vector)> ''
> | | |Rest of the points of the layers_copy [id HG] <TensorType(float32, matrix)> -> [id DJ]
> | |Constant{0} [id HH] <int64>
> |Constant{0} [id HH] <int64>
Storage map footprint:
- <TensorType(float32, matrix)>, Input, Shape: (9, 729), ElemSize: 4 Byte(s), TotalSize: 26244 Byte(s)
- <TensorType(float32, matrix)>, Input, Shape: (729, 3), ElemSize: 4 Byte(s), TotalSize: 8748 Byte(s)
- IncSubtensor{Set;:int64:}.0, Shape: (1, 3, 729), ElemSize: 4 Byte(s), TotalSize: 8748 Byte(s)
- <TensorType(float32, matrix)>, Input, Shape: (1, 729), ElemSize: 4 Byte(s), TotalSize: 2916 Byte(s)
- Reference points for every layer, Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- Rest of the points of the layers, Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- Position of the dips, Input, Shape: (2, 3), ElemSize: 4 Byte(s), TotalSize: 24 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- <TensorType(int64, vector)>, Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- Angle of every dip, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Azimuth, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Polarity, Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- Constant{1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{0}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{-1}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Constant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Elemwise{minimum,no_inplace}.0, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- TensorConstant{0}, Shape: (), ElemSize: 1 Byte(s), TotalSize: 1.0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
- Subtensor{:int64:}.0, Shape: (0,), ElemSize: 8 Byte(s), TotalSize: 0 Byte(s)
TotalSize: 47725.0 Byte(s) 0.000 GB
TotalSize inputs: 38969.0 Byte(s) 0.000 GB
Apply node that caused the error: OpFromGraph{inline=False}(<TensorType(float32, matrix)>, <TensorType(float32, vector)>, <TensorType(float32, vector)>, <TensorType(float32, vector)>, reference, rest, Length of interfaces in every series, Length of foliations in every series, List with the number of formations, Grade of the universal drift, final block of lithologies init, Coordinates of the grid points to interpolate, Range, Covariance at 0, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, scalar)>, <TensorType(float32, matrix)>, <TensorType(int64, vector)>, Value of the formation)
Toposort index: 7
Inputs types: [TensorType(float32, matrix), TensorType(float32, vector), TensorType(float32, vector), TensorType(float32, vector), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(int64, vector), TensorType(float32, matrix), TensorType(float32, matrix), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, scalar), TensorType(float32, matrix), TensorType(int64, vector), TensorType(int64, vector)]
Inputs shapes: [(2, 3), (2,), (2,), (2,), (34, 3), (34, 3), (2,), (2,), (2,), (2,), (1, 729), (729, 3), (), (), (), (), (), (9, 729), (5,), (5,)]
Inputs strides: [(4, 8), (4,), (4,), (4,), (12, 4), (12, 4), (8,), (8,), (8,), (8,), (2916, 4), (4, 2916), (), (), (), (), (), (2916, 4), (8,), (8,)]
Inputs values: ['not shown', array([ 18.434999, 71.565002], dtype=float32), array([ 90., 270.], dtype=float32), array([ 1., 1.], dtype=float32), 'not shown', 'not shown', array([ 0, 34]), array([0, 2]), array([0, 5]), array([3, 3]), 'not shown', 'not shown', array(0.8882311582565308, dtype=float32), array(0.01878463476896286, dtype=float32), array(0.009999999776482582, dtype=float32), array(2.0, dtype=float32), array(4.0, dtype=float32), 'not shown', array([13, 5, 7, 4, 5]), array([1, 2, 3, 4, 5])]
Inputs type_num: [11, 11, 11, 11, 11, 11, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 7, 7]
Outputs clients: [['output']]
Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
handler(stream, idents, msg)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "/home/miguel/anaconda3/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-9-3aff1d38cda1>", line 26, in <module>
ref, rest))
Debugprint of the apply node:
OpFromGraph{inline=False} [id A] <TensorType(float32, 3D)> 'GeMpy'
Storage map footprint:
- <TensorType(float32, matrix)>, Shared Input, Shape: (9, 729), ElemSize: 4 Byte(s), TotalSize: 26244 Byte(s)
- Coordinates of the grid points to interpolate, Shared Input, Shape: (729, 3), ElemSize: 4 Byte(s), TotalSize: 8748 Byte(s)
- final block of lithologies init, Shared Input, Shape: (1, 729), ElemSize: 4 Byte(s), TotalSize: 2916 Byte(s)
- <TensorType(float32, matrix)>, Shared Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- <TensorType(float32, matrix)>, Shared Input, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- rest, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- reference, Shape: (34, 3), ElemSize: 4 Byte(s), TotalSize: 408 Byte(s)
- TensorConstant{[ 0 1 2 .. 10 11 12]}, Shape: (13,), ElemSize: 8 Byte(s), TotalSize: 104 Byte(s)
- <TensorType(int64, vector)>, Shared Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- Value of the formation, Shared Input, Shape: (5,), ElemSize: 8 Byte(s), TotalSize: 40 Byte(s)
- <TensorType(float32, matrix)>, Shared Input, Shape: (2, 3), ElemSize: 4 Byte(s), TotalSize: 24 Byte(s)
- Length of interfaces in every series, Shared Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- Length of foliations in every series, Shared Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- List with the number of formations, Shared Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- Grade of the universal drift, Shared Input, Shape: (2,), ElemSize: 8 Byte(s), TotalSize: 16 Byte(s)
- reservoir, Input, Shape: (1,), ElemSize: 8 Byte(s), TotalSize: 8 Byte(s)
- <TensorType(float32, vector)>, Shared Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- <TensorType(float32, vector)>, Shared Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- <TensorType(float32, vector)>, Shared Input, Shape: (2,), ElemSize: 4 Byte(s), TotalSize: 8 Byte(s)
- reservoir, Shape: (1,), ElemSize: 8 Byte(s), TotalSize: 8 Byte(s)
- TensorConstant{2}, Shape: (), ElemSize: 8 Byte(s), TotalSize: 8.0 Byte(s)
- Range, Shared Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- Covariance at 0, Shared Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Shared Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Shared Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
- <TensorType(float32, scalar)>, Shared Input, Shape: (), ElemSize: 4 Byte(s), TotalSize: 4.0 Byte(s)
TotalSize: 39880.0 Byte(s) 0.000 GB
TotalSize inputs: 39056.0 Byte(s) 0.000 GB